Adaptive WENO Methods Based on Radial Basis Function Reconstruction

نویسندگان

  • Caterina Bigoni
  • Jan S. Hesthaven
چکیده

We explore the use of radial basis functions (RBF) in the weighted essentially non-oscillatory (WENO) reconstruction process used to solve hyperbolic conservation laws, resulting in a numerical method of arbitrarily high order to solve problems with discontinuous solutions. Thanks to the mesh-less property of the RBFs, the method is suitable for non-uniform grids and mesh adaptation. We focus on multiquadric radial basis functions and propose a simple strategy to choose the shape parameter to control the balance between achievable accuracy and the numerical stability. We also develop an original smoothness indicator which is independent of the RBF for the WENO reconstruction step. Moreover, we introduce type I and type II RBF-WENO methods by computing specific linear weights. The RBF-WENO method is used to solve linear and nonlinear problems for both scalar and systems of conservation laws, including Burgers equation, the Buckley-Leverett equation, and the Euler equations. Numerical results confirm the performance of the proposed method. We finally consider an effective conservative adaptive algorithm that captures moving shocks and rapidly varying solutions well. Numerical results on moving grids are presented for both Burgers equation and the more complex Euler equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive WENO methods based on radial basis functions reconstruction

We explore the use of radial basis functions (RBF) in the weighted essentially non-oscillatory (WENO) reconstruction process used to solve hyperbolic conservation laws, resulting in a numerical method of arbitrarily high order to solve problems with discontinuous solutions. Thanks to the mesh-less property of the RBFs, the method is suitable for non uniform grids and mesh adaptation. We focus o...

متن کامل

Non-polynomial ENO and WENO finite volume methods for hyperbolic conservation laws

The essentially non-oscillatory (ENO) method is an efficient high order numerical method for solving hyperbolic conservation laws designed to reduce the Gibbs oscillations, if existent, by adaptively choosing the local stencil for the interpolation. The original ENO method is constructed based on the polynomial interpolation and the overall rate of convergence provided by the method is uniquely...

متن کامل

On the Construction of Kernel-Based Adaptive Particle Methods in Numerical Flow Simulation

This contribution discusses the construction of kernel-based adaptive particle methods for numerical flow simulation, where the finite volume particle method (FVPM) is used as a prototype. In the FVPM, scattered data approximation algorithms are required in the recovery step of the WENO reconstruction. We first show how kernel-based approximation schemes can be used in the recovery step of part...

متن کامل

Block-Based Compressive Sensing Using Soft Thresholding of Adaptive Transform Coefficients

Compressive sampling (CS) is a new technique for simultaneous sampling and compression of signals in which the sampling rate can be very small under certain conditions. Due to the limited number of samples, image reconstruction based on CS samples is a challenging task. Most of the existing CS image reconstruction methods have a high computational complexity as they are applied on the entire im...

متن کامل

Adaptive ADER Methods Using Kernel-Based Polyharmonic Spline WENO Reconstruction

An adaptive ADER finite volume method on unstructured meshes is proposed. The method combines high order polyharmonic spline WENO reconstruction with high order flux evaluation. Polyharmonic splines are utilised in the recovery step of the finite volume method yielding a WENO reconstruction that is stable, flexible and optimal in the associated Sobolev (BeppoLevi) space. The flux evaluation is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 72  شماره 

صفحات  -

تاریخ انتشار 2017